EXPLOSION INVESTIGATION
AND
ANALYSIS

2012 NATIONAL ADVANCED FIRE, ARSON, AND EXPLOSION INVESTIGATION TRAINING PROGRAM
SARASOTA, FLORIDA
AUGUST 6-9, 2012

RON HOPKINS, CFEI, CFII, CFPS
TRACE FIRE PROTECTION AND SAFETY CONSULTANTS, LTD.
RICHMOND, KENTUCKY USA
Explosion Investigation and Analysis

Ron Hopkins, CFEI, CFII, CFPS
TRACE Fire Protection and Safety
Richmond, Kentucky

References
- NFPA-921 Chapter 21
- Explosion Investigation and Analysis, Kennedy
- Gas Explosions in Buildings and Heating Plants, Harris
- Gas Explosion Handbook, GexCon
- Practical Bomb Scene Investigation, Thurman
- Explosives Engineering; Copper
- Introduction to the Technology of Explosives; Cooper

I. Introduction

Foundation

Pay attention to details the large pieces will come in to place.

Scientific Method
A. Definitions

1. Explosion

The sudden conversion of potential energy (chemical or mechanical) into kinetic energy with the production and release of gases under pressure, or the release of gas under pressure. These high pressure gases then do mechanical work such as moving, changing, or shattering nearby materials. (NFPA-921)
Elements of an Explosion

- Rapid Increase in Gas Pressure (Gas Dynamic)
- Confinement of the Pressure
- Rapid release of that Pressure
- Damage or Change to the confining structure or the vessel
- Noise is not an element (Not required)

2. Explosives

The term “explosives”, generally is used in reference to a wide range of energetic materials that can react chemically to produce heat, light, and gas.

3. Combustion Explosion

The rapid combustion of a fuel in a confined area.
- Fuel Gases
- Industrial Gases
- Dust
4. Deflagration

Rapid burning.

Deflagration is a rapid chemical reaction in which the output of heat is enough to enable the reaction to proceed and (depending on the ambient conditions of the fuel) be accelerated without input of heat from another source. (Subsonic Reaction)

5. Detonation

Instantaneous combustion or conversion of a solid, liquid or gas into larger quantities of expanding gases accompanied by heat, shock and most often a noise. (Supersonic Reaction)

6. Detonation Velocity
a. Detonation Wave

A detonation wave is a shock wave in a reacting (explosive or fuel) material where the chemical reaction is carried out in the shock front.

Example is an explosive material. However, in a diffuse fuel the flame front or reaction zone is also present.

Flame Front or Reaction Zone

7. Deflagration to Detonation Transition (DDT)

Once a self-sustaining reaction has begun, it propagates through the adjacent material at a rate determined by either porosity, particle size, density, pressure, heat, and distance.

Deflagration (Subsonic) transitions to Detonation (Supersonic) reaction rate.
B. Types Of Explosions

1. Mechanical Explosion

Nature of the fuel does not change.
2. Chemical Explosion

Nature of the fuel changes.
Explosives, no oxidizer required

3. Electrical Explosion

An electrical explosion is caused by a high-energy electrical arc which generates sufficient heat to cause failure of the containing component.
3. Electrical Explosion

4. Nuclear Explosion

An atomic explosion is induced by either fission or fusion.

II. Physics of Explosions
A. Effects of an Explosion

Blast Pressure
Fragmentation
Thermal or Incendiary
Ancillary Effects

1. Blast Pressure Effects

a. Positive Pressure Phase
Positive Pressure Phase

Positive Pressure Phase

Positive Pressure Phase
Positive Pressure Phase
PEPCON Rocket Fuel
Fire and Explosion, 1988

b. Negative pressure phase
b. Negative pressure phase

Factors:

- Longer duration
- Lower pressures
b. Negative pressure phase

Factors:
- Longer duration
- Lower pressures
- Lower air velocity

c. Shape of the Pressure Wave
d. Rate of Pressure Rise

v.

Maximum Pressure

2. Fragmentation Effect

Fragments

Shrapnel
3. Thermal Effect - Incendiary
Example temperatures: 3000 – 7000 degrees F.

High Density and Low Density Fuels

4. Secondary Blast
Pressure Or Ancillary Effects

a. Reflection
4. Secondary Blast Pressure Or Ancillary Effects

a. Reflection
b. Earth, Water Shock, and Ceiling

D. Factors Controlling Explosion Effects

1. Nature of the Fuel and Oxidizer
2. Quantity of the Fuel Present
3. Configuration of the Fuel
4. Blast Pressure Front Modifiers
4. Containment Vessel
5. Initiation Source and Location
6. Venting

F. Seated Explosion

The “seat” of an explosion is defined as the crater or area of greatest damage located at the point of initiation (epicenter) of an explosion.
a. Condensed Phase Fuel

An explosive material in the form of a solid or liquid rather than a gas or vapor.

b. Mechanical Explosion

Boiling
Liquid
Expanding
Vapor
Explosion
G. Non-Seated Explosion

Those explosions where there is no physical evidence of a single location where the explosion originated.

Diffuse Phase Fuel

a. Diffuse Phase Fuel, Gases and Vapors

A general category of combustion explosions that occur as a result of the ignition of fuel gases (i.e. Natural Gas, LPG), Industrial Gases, Sewer Gases, and vapors of pooled liquids (i.e. gasoline vapors, lacquer thinner, MEK).

b. Dust Explosion

Ignition of solid materials such as dusts and fines.
III. Explosives

A. General
Fuel Oxidizer Relationships

Explosive
Fuel
Oxidizer - Oxygen Balance
Special Fuel or Sensitizer

1. Definitions

a. Firing Train

A sequence of events required to initiate a single or final event.

b. High Order Detonation

Complete burning of the explosive material or initiation of the material at maximum velocity.
c. Low Order Detonation

Incomplete burning of the explosive material or initiation of the material at less than maximum velocity.

Reaction at less than maximum velocity

2. Low Explosives

a. Deflagrates
b. Material is a mixture
c. Initiated by heat.
d. Confinement required for explosion
e. VOE below 3000 ft/sec

Examples: Black powder, smokeless powder

3. High Explosives

a. Material undergoes detonation without confinement.
b. Material is a compound
c. Initiated by shock or heat
d. Supersonic reaction in the product.
e. High brisance
f. VOD above 3300 ft/sec

Examples: Dynamite, ANFO, PETN
IV. Diffuse Fuel Explosions

- Fuel Gases
- Pooled Flammable/Combustible Liquids
- Dusts
- Backdraft

A. Introduction

Fuel Gases and Fires or Explosions

Dramatically Alter the Normal Fire Growth and Spread

NFPA 54
National Fuel Gas Code

From the “point of delivery” to the connections with each gas utilization device

The “point of delivery” shall be considered the outlet of the service meter assembly or the outlet of the service regulator or service shutoff valve where no meter is provided.
NFPA 58
Liquefied Petroleum Gas Code
Containers, piping, and associated equipment, when delivering LP-Gas to a building for use as a fuel gas.
Including tanks, cylinders, and piping up to the second stage regulator

Application of the NFPA Codes

B. Fuel Gases
Fuel gases by definition:
• Natural Gas (Commercial)
• Liquefied Petroleum Gas (in the vapor phase only)
• Liquefied Petroleum Gas–Air mixtures
• Manufactured Gases
• Mixtures of these gases
Most commonly encountered by the fire and explosion investigator will be natural gas and commercial propane.
1. Odorization

- LP-Gas and natural gas have little or no identifiable odor in their natural state

- Odorant containing t-butyl mercaptan, thiophane, ethyl mercaptan or other mercaptans are added by law
 - Natural Gas - 49 CFR 129.625
 - LP gas NFPA 58 Section 4.2.1

- Must be noticeable “at concentration in air of one-fifth of the lower explosive limit”

2. Fuel Gas System Components

 a. Natural Gas Systems

 Typically piped directly to the consumers’ buildings from centralized production and storage facilities via:
 - Transmission Pipelines.
 - Distribution Pipelines (Mains)
b. Fuel Gas System Components

Natural Gas Systems
Service Lines (House Lines)
- Piping
- Pressure regulation
- Metering
- Valving
- Utilization equipment

Fuel Gas System Components

b. LPG Systems
- Storage Tank or Cylinder
- Piping
- Pressure regulation
- Metering
- Valving
- Utilization equipment

(1.) LP-Gas Storage Containers

ASME Tanks (>120 Gallons)
ASME Boiler and Pressure Vessel Code

DOT Cylinders (<120 Gallons)
49 CFR - Transportation
(2.) Container Appurtenances
(Tanks)

<table>
<thead>
<tr>
<th>Firefinder</th>
<th>Liquid Filler</th>
<th>Liquid Filler Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve</td>
<td>Valve</td>
<td>Valve</td>
</tr>
</tbody>
</table>

c. Normal Working Pressures

- **Natural Gas**: 8” W.C. (~0.3 PSI)
- **Propane**: 11” W.C. (~0.4 PSI)

Some appliances have additional regulators to lower working pressures to about 3.5” W.C. (~0.13 PSI)

1 psi = 27.7” W.C.

3. Fuel Gas Explosions

Gas Explosion Handbook, Christian Michelsen Research, Norway
To much gasoline!

Flash fire or unconfined combustion explosion?
4. Characterization of Explosion Damage

a. High Order Damage

Characteristics

- Small Debris Pieces
- Long Missile Distances
- Fast Rate of Pressure Rise
- Negative Pressure Phase is powerful
Fuel - Air Relationship

- Optimum Mixture
- Near or just above stoichiometric
- Most efficient burning
- Little following fire

b. Low Order Damage

Characteristics

- Large Debris Pieces
- Short Missile Distances
- Slower Rate of Pressure Rise
- Pushing or Heaving
Fuel - Air Relationship

- Near LEL or UEL
- Inefficient burning
- Low rate of pressure rise
- Low speed pressure wave
- Near LEL, little following fire
- Near UEL, greater potential for following fire

Damage Characterization

Flash Fire Damage
c. Vapor Density and Damage

Lighter-than-air gases

- Collect in upper areas
- Pocketing at ceilings
- Migrate through openings

Heavier-than-air gases

- Collect in lower areas
- Burns at high levels when ignited
- Low pocketing is unusual

Relationship of Gas in Compartment?
Why?
c. Location of damage is not indicative of vapor density

A common misconception
• More a function of wall strength or,
• Height of explosive range
d. Minimum Ignition Energy

• Most easily ignitable fuels
• Ignition Temperatures
 700 - 1100 F
• Ignition Energies 0.20 - 0.25 millijoules
 Examples would include:
 Static Electricity,
 Operation of Motors, Switch

e. Underground Migration Fuel Gases
f. Multiple ("Cascade") Explosions
 a. Multiple pockets of gas
 b. "Cascade" from room to room or floor to floor
 c. Aeration of pockets over the UEL
 d. Multiple explosions are very common
E. Dust Explosions

1. Dynamics of Dust and other Diffuse Fuel Explosions

a. 5 Elements Required for a Dust or other Diffuse Fuel Explosion

- Ignition Source
- Dispersion
- Deflagration
- Confinement
- Com Bustible Dust
- Oxygen in Air
b. Diffuse Phase Fuels, Dust

b. Wide variety of materials

Combustible and Non-Combustible

c. Controlling Factors

- Suspended or Layered
- Particle Size
- Concentration
- Turbulence
- Moisture
2. Progression of Dust Explosions

a. Usually occur in series
b. Initial explosions usually less violent than subsequent
c. Subsequent explosions are fueled by additional dust put into suspension

3. Typical Dust Explosion Event

Progression of a Dust Explosion

www.TRACEfireandsafety.com
Ron.Hopkins@eku.edu

2012 National Advanced Fire, Arson and Explosion Investigation Training Program
Progression of a Dust Explosion

Initial Internal Deflagration

Process Equipment

Time, msec.

Shock Wave

Reflection of Shock Waves

Process Equipment

Time, msec.
Progression of a Dust Explosion

Process Equipment

Secondary Deflagration Propagates through Interior

0 25 50 75 100 125 150 175 200 225 250 300 325
Time, msec.

Progression of a Dust Explosion

Process Equipment

Secondary Deflagration Vents from Structure

0 25 50 75 100 125 150 175 200 225 250 300 325
Time, msec.

Progression of a Dust Explosion

Secondary Deflagration
Causes Collapse and Residual Fires

0 25 50 75 100 125 150 175 200 225 250 300 325
Time, msec.
CSB Model of the Imperial Sugar Plant Explosion

G. Backdraft Explosions

1. Ventilation Controlled Fires
 Post Flashover Conditions
3. Ventilation

Introduction of fresh air (oxygen) allows rapid combustion of the fuel.

Break!

15 Minutes

IV. Investigating the Explosion Scene
A. Objectives of Investigation

No different than fire investigations

1. Determine Origin
2. Identify the fuel
3. Identify the ignition source
4. Determine the Cause
5. Establish responsibility

B. Systematic Approach is Even More Important

1. Scenes are usually larger than simpler fires
2. Scenes are usually more disturbed than fires

C. Secure the Scene

Establish and maintain control of the scene and area
Prevent unauthorized persons from entering
D. Establishing the Scene

1. 1 1/2 times the distance of the furthest piece of debris
2. Debris may have been propelled great distances into adjacent buildings or vehicles
3. As additional debris is found, the scene is widened

E. Scene Search

1. Outer perimeter inward towards epicenter

2. Briefing and Control of Search Teams
 - Identifying evidence
 - Photographing evidence
 - Mapping evidence
3. Safety at the Explosion Scene

a. Structures are unsound
b. Secondary explosions are possible
c. In bombings, secondary devices, unexploded devices or undetonated explosives are possible
d. Special Scene Hazards

F. Incident Assessment

1. Initial Incident Assessment

Identify Explosion or Fire
Burning or Heat Treatment
Overpressure

Incident

Fire
Explosion

explosives
BLEVE
Fuel Gas
Dust
 Incident

- Fire
- Explosion

a. Low or High Order Damage

b. Seated or Non-Seated
c. Type of Explosion

- Mechanical
- Chemical
- Combustion
- BLEVE
- Electrical

d. Type of Fuel

a. Fuels Available

b. Condition of Systems

c. Compare Damage
2. Detailed Scene Assessment

a. Record the Investigation, Evidence and Findings
 • Notetaking
 • Diagramming and Mapping
 • Photography
 • Proper Evidence Collection and Preservation

b. Identify Damage Effects of the Explosion

Note each instance of blast or overpressure damage
c. Identify Pre-Blast and Post-Blast Fire Damage

Propelled Debris may be burned or unburned
d. Locate, Identify and Record Articles of Evidence

Evidence may have been propelled into a variety of locations

VI. Explosion Dynamics Analysis

A. Identify Force Vectors

 Note debris which indicate direction and force of explosion
 Direction
 Magnitude

B. Identify epicenter

 • Exact epicenter most often found with seated explosions
 • Non-seated explosions produce larger origins
C. Analyze Origin (Epicenter)

1. Explosion Dynamics Analysis
 - Trace Force Vectors
 - Least to Most Damage

2. Construct Explosion Dynamics
 - *Vector Diagram*
 - Direction of debris movement
 - Relative force of debris movement
 - Both large scale and small scale diagrams may be necessary
D. Analyze Fuel Source

1. Compare nature of damage to available fuels

2. All available fuels must be considered and eliminated

3. Samples

4. Physical Evidence

Samples

a. Residues
 - Ignitable Liquids
 - Explosives

b. Fuel Containers/ Appliances/ Equipment

5. Determine Fuel Source

Source may be related to Vapor Density

All gas appliances and piping pressure tested

Any leaks discovered must be identified as pre- or post-blast
E. Analyze Ignition Source

1. Often most difficult

2. Multiple possible ignition sources often present

3. Consider all available information
 - Minimum Ignition Energy of Fuel
 - Ignition Energy of Ignition Source
 - Ignition Temperature of Fuel
 - Temperature of Ignition Source
 - Location of Ignition Source in Relation to Fuel
 - Contemporaneous presence of Fuel and Ignition Source
 - Witness Accounts

F. Analyze Cause/Responsibility

1. What brought together Fuel and Ignition Source at the Origin
 - Action
 - Omission
 - Circumstances
2. What could have prevented the Explosion

- Compliance to Codes
- Compliance to Standards
- Compliance to Good Practice
- Proper Industrial Engineering

Explosion Dynamics Analysis
A. Initial Incident Assessment

1. Identify Explosion or Fire
 Burning or Heat Treatment
 Overpressure

```
Incident

| Fire | Explosion |
```
A. Initial Incident Assessment

1. Identify Explosion or Fire
 Burning or Heat Treatment
 Overpressure

Next Step?

Ron.Hopkins@eku.edu
www.TRACEfireandsafety.com

2012 National Advanced Fire, Arson and Explosion Investigation Training Program
Next Step?

Incident

- Fire
- Explosion
 - Seated
 - Non-Seated

Plot Diagram of the Mobile Home Investigation

Not to Scale
Next Step?

Incident

Fire

Explosion

Seated

Non-Seated

Condensed Phase Fuel
Mechanical Explosion

Diffuse Fuel
Incident

Fire

Explosion

Seated

Non-Seated

Explosives
BLEVE
Gases and Vapors
Dust

Low Explosive
High Explosive
Fuzing System

Container
Fuel
Heat Source

Fuel Source
Ignition

Fuels Present?

• Dust
• Propane
• Natural Gas
• Vapors from Pooled Liquids
• Sewer Gas

Next Step?

Incident

Fire

Explosion

Seated

Non-Seated

Condensed Phase Fuel
Mechanical Explosion

Diffuse Fuel

Determine Fuels Present

Ron.Hopkins@eku.edu
www.TRACEfireandsafety.com

2012 National Advanced Fire, Arson and Explosion Investigation Training Program
Next Step?

Where did the event start?

Explosion Dynamics Vector Analysis

Epicenter of the Explosion

Why?
What is the next step?
Where do we excavate?
Red Plastic Container?

Criminal Case Started
Pay Attention to Details
and the Big Pieces will Fall into Place

Questions?

Copyright © September 2008 Ron Hopkins
All Rights Reserved
TRACE
Fire Protection and Safety Consultants, Ltd.
123 Redwood Drive
Richmond, Kentucky 40475
859-624-1136 Voice
859-623-6863 FAX
rhopkins1@earthlink.net
www.TRACEfireandsafety.com
Duplication permitted for use in NAFI Sponsored or Co-Sponsored programs
Waller Avenue

Incident Avenue

800 feet

Fuel Gas Explosion Investigation Scene
104 Incident Avenue
Richmond, KY 40475
August 9, 200x
Partial Plot Diagram of the Explosion Scene
Not to Scale
Ron Hopkins
Fire Investigation
104 Kit Carson Drive
Richmond, KY
August 9, 200x
Plot Diagram of the Mobile Home Investigation
Not to Scale
Ron Hopkins
North

Master Bedroom

Bath

Bedroom 2

Bedroom 1

Living Room

Kitchen

Furnace

Fire Investigation
104 Kit Carson
Richmond, KY
August 9, 200x
Plot Diagram of the Mobile Home Investigation
Not to Scale
Ron Hopkins
Incident

Fire

Explosion

Seated

Explosives

Low Explosive

High Explosive

Fuzing System

BLEVE

Container

Fuel

Heat Source

Fuel Gas

Fuel

Source

Ignition

Dust

Fuel

Source

Ignition